robot n. 1.機(jī)器人。 2.自動(dòng)機(jī),自動(dòng)儀器,自動(dòng)控制導(dǎo)[飛]彈,遙控設(shè)備。 an electronic robot 電子自動(dòng)裝置。 a robot airplane 無線電操縱飛機(jī),無人飛機(jī)。 a robot bomb 自動(dòng)操縱的飛彈。 a robot bomber 遙控轟炸機(jī),無人駕駛轟炸機(jī)。
( 6 ) soccer robot dynamic anti - collision and motion control ( 6 )足球機(jī)器人動(dòng)態(tài)避碰和運(yùn)動(dòng)控制。
Robot dynamics and kinematics 機(jī)器人運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)。
Research on robot dynamic characteristics with a method of experimental modal analysis 實(shí)驗(yàn)?zāi)B(tài)技術(shù)在機(jī)器人動(dòng)態(tài)特性分析中的應(yīng)用
In the dynamic environment , mobile robot dynamic path planning is a difficult problem to solve 摘要?jiǎng)討B(tài)環(huán)境中,移動(dòng)機(jī)器人的動(dòng)態(tài)路徑規(guī)劃是一個(gè)較難解決的課題。
Intelligent robot visual servo is the fusion of results from many elemental areas including real - time image processing , robot kinematics , robot dynamics , control theory , computer technology and real - time computation , and is a main subject in the research field of computer vision 智能機(jī)器人視覺伺服控制是實(shí)時(shí)圖像處理、機(jī)器人運(yùn)動(dòng)學(xué)、控制理論、計(jì)算機(jī)技術(shù)以及實(shí)時(shí)計(jì)算等領(lǐng)域的融合,是計(jì)算機(jī)視覺研究前沿的一個(gè)重要分支。
Intelligent robot visual servoing is the fusion of results from many elemental areas including high - speed image processing , robot kinematics , robot dynamics , control theory , computer technology and real - time computation , and is a main subject in the research field of robot visual servoing system 智能機(jī)器人視覺伺服控制是實(shí)時(shí)圖像處理、機(jī)器人運(yùn)動(dòng)學(xué)、控制理論、計(jì)算機(jī)技術(shù)以及實(shí)時(shí)計(jì)算等領(lǐng)域的融合,是計(jì)算機(jī)視覺研究前沿的一個(gè)重要分支。
Characterizing and analyzing the dynamic properties of the humanoid - robot is one of the key problems in the research field of robot . but at present , the existing mo - deling methods of the humanoid - robot dynamics are based on the theory of traditional multi - rigid - body dynamics , and usually simplifying the system as framework with multi - rigidity poles and simplex joints . for this reason , the walking dynamic perform - ance of the humanoid - robot is pictured only approximately by these methods 精確地描述和分析系統(tǒng)動(dòng)力學(xué)特性一直是仿人機(jī)器人研究方向需要解決的關(guān)鍵課題之一,而至今為止,針對(duì)此系統(tǒng)的已有建模理論和方法一般是以其結(jié)構(gòu)剛性桿件簡化,以及將桿件以單純鉸鏈聯(lián)結(jié)成“骨架”為前提,建立在傳統(tǒng)多剛體動(dòng)力學(xué)理論基礎(chǔ)上,這些研究成果由于結(jié)構(gòu)的簡化和多剛體理論的局限,只能近似地反映仿人機(jī)器人系統(tǒng)的步行動(dòng)力學(xué)特性。
The second part is a robust compensating controller based on lyapnuov theory which has simple structure and is used for eliminate the effect caused by parametric uncertainty . exact knowledge for robot dynamics is not needed except that the bound of parametric uncertainty must be known 魯棒補(bǔ)償控制器用于消除參數(shù)誤差帶來的不確定性影響,其結(jié)構(gòu)簡單,只需知道系統(tǒng)的一個(gè)參數(shù)不確定性上界,并保證在系統(tǒng)存在較大的參數(shù)誤差情況下,按照對(duì)控制器參數(shù)的不同選擇,達(dá)到3種不同的穩(wěn)定性結(jié)果(即guub 、 gas和ges ) 。
By establishing descartes coordinate of assembly robot and applying coordinate transformation to derive converse and positive kinematics equation of the assembly robot , we study the solution of kinematics equation of the assembly robot . at the same time , we formulate the robot dynamics in the way of lagrange 通過建立裝配機(jī)器人的笛卡兒坐標(biāo)系,推導(dǎo)出裝配機(jī)器人的正、逆運(yùn)動(dòng)學(xué)矩陣方程,并研究了正、逆運(yùn)動(dòng)學(xué)方程的解;同時(shí)利用拉格朗日方法建立了裝配機(jī)器人的動(dòng)力學(xué)方程,并進(jìn)行動(dòng)力學(xué)方程分析。